ON THE MARCINKIEWICZ–FEJÉR MEANS OF DOUBLE WALSH–KACZ–MARZ–FOURIER SERIES

Ushangi Goginava

Institute of Mathematics, Faculty of Exact and Natural Sciences, Tbilisi State University, Chavchavadze str. 1, Tbilisi 0128, Georgia

Károly Nagy

Institute of Mathematics and Computer Science, College of Nyíregyháza, P.O. Box 166, Nyíregyháza, H-4400 Hungary

Received: November 2007

MSC 2000: 42 C 10

Keywords: Walsh–Kaczmarz system, Fejér means, Marcinkiewicz means, maximal operator.

Abstract: In this paper we prove that the maximal operator of the Marcinkiewicz–Fejér means of the 2-dimensional Fourier series with respect to the Walsh–Kaczmarz system is not bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$.

The second author [5] proved that the maximal function of Marcinkiewicz–Fejér means with respect to the two dimensional Walsh–Kaczmarz system is of weak type $(1, 1)$ and of type (p, p) for all $p > 1$. Consequently, for any integrable function f the Marcinkiewicz–Fejér means with respect to the two dimensional Walsh–Kaczmarz system converge almost everywhere to the function itself. This theorem was extended in [2] by the authors and G. Gát. Namely, for $p > 2/3$, the maximal oper-

E-mail addresses: u.goginava@math.sci.tsu.ge, nkaroly@nyf.hu
ator M^* is bounded from the Hardy space $H_p(G^2)$ to the space $L_p(G^2)$. The main aim of this paper is to prove that the assumption $p > 2/3$ is essential. Namely, the maximal operator M^* is not bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$.

Let \mathbf{P} denote the set of positive integers, $\mathbb{N} := \mathbf{P} \cup \{0\}$. Denote \mathbb{Z}_2 the discrete cyclic group of order 2, that is $\mathbb{Z}_2 = \{0, 1\}$, where the group operation is the modulo 2 addition and every subset is open. The Haar measure on \mathbb{Z}_2 is given such that the measure of a singleton is 1/2. Let G be the complete direct product of the countable infinite copies of the compact groups \mathbb{Z}_2. The elements of G are of the form $x = (x_0, x_1, \ldots, x_k, \ldots)$ with $x_k \in \{0, 1\}$ ($k \in \mathbb{N}$). The group operation on G is the coordinate-wise addition, the measure (denote by μ) and the topology are the product measure and topology. The compact Abelian group G is called the Walsh group. A base for the neighborhoods of G can be given in the following way:

$I_0 (x) := G, I_n (x) := I_n (x_0, \ldots, x_{n-1}) := \{y \in G : y = (x_0, \ldots, x_{n-1}, y_n, y_{n+1}, \ldots)\}$, $(x \in G, n \in \mathbb{N})$.

These sets are called dyadic intervals. Let $0 = (0 : i \in \mathbb{N}) \in G$ denote the null element of G, $I_n := I_n (0) \ (n \in \mathbb{N})$. Set $e_n := (0, \ldots, 0, 1, 0, \ldots) \in G$, the nth coordinate of which is 1 and the rest are zeros ($n \in \mathbb{N}$).

For $k \in \mathbb{N}$ and $x \in G$ denote

$\ r_k (x) := (-1)^{x_k}$

the kth Rademacher function. If $n \in \mathbb{N}$, then $n = \sum_{i=0}^{\infty} n_i 2^i$, where $n_i \in \{0, 1\}$ ($i \in \mathbb{N}$), i.e. n is expressed in the number system of base 2. Denote $|n| := \max\{j \in \mathbb{N} : n_j \neq 0\}$, that is $2^{[n]} \leq n < 2^{|n|+1}$.

The Walsh–Paley system is defined as the sequence of Walsh–Paley functions:

$w_n (x) := \prod_{k=0}^{\infty} (r_k (x))^{n_k} = r_{|n|} (x) (-1)^{\sum_{k=0}^{[n]-1} n_k x_k} \quad (x \in G, n \in \mathbf{P}).$

The Walsh–Kaczmazr functions are defined by $\kappa_0 := 1$ and for $n \geq 1$

$\kappa_n (x) := r_{|n|} (x) \prod_{k=0}^{[n]-1} (r_{|n|-1-k} (x))^{n_k} = r_{|n|} (x) (-1)^{\sum_{k=0}^{[n]-1} n_k x_{[n]-k-1}}.$
For $A \in \mathbb{N}$ define the transformation $\tau_A : G \to G$ by

$$\tau_A(x) := (x_{A-1}, x_{A-2}, \ldots, x_0, x_A, x_{A+1}, \ldots).$$

By the definition of τ_A (see [9]), we have

$$\kappa_n(x) = r_{|n|}(x)w_{n-2|n|}(\tau_{|n|}(x)) \quad (n \in \mathbb{N}, \ x \in G).$$

The σ-algebra generated by the dyadic 2-dimensional cube I_k^2 of measure $2^{-k} \times 2^{-k}$ will be denoted by F_k ($k \in \mathbb{N}$).

The Hardy martingale space $H_p(G^2)$ consists all martingales for which

$$\|f\|_{H_p} = \|f^*\|_p < \infty.$$
The Marcinkiewicz–Fejér means of a martingale \(f \) are defined by

\[
\mathcal{M}_n^\alpha (f; x^1, x^2) := \frac{1}{n} \sum_{k=0}^{n-1} S_{k,k}^\alpha (f, x^1, x^2).
\]

For the martingale \(f \) we consider the maximal operators

\[
\mathcal{M}^{*\kappa} f(x^1, x^2) = \sup_n |\mathcal{M}_n^\kappa(f, x^1, x^2)|.
\]

In 1939 for the two-dimensional trigonometric Fourier partial sums \(S_{j,j} (f) \) Marcinkiewicz [6] has proved for \(f \in L \log L([0, 2\pi]^2) \) that the means

\[
\mathcal{M}_n f = \frac{1}{n} \sum_{j=1}^{n} S_{j,j} (f)
\]

converge a.e. to \(f \) as \(n \to \infty \). Zhizhiashvili [14] improved this result for \(f \in L([0, 2\pi]^2) \).

For the two-dimensional Walsh–Fourier series Weisz [11] proved that the maximal operator

\[
\mathcal{M}^{*w} f = \sup_{n \geq 1} \frac{1}{n} \left| \sum_{j=0}^{n-1} S_{j,j}^w (f) \right|
\]

is bounded from the two-dimensional dyadic martingale Hardy space \(H_p \) to the space \(L_p \) for \(p > 2/3 \) and is of weak type \((1,1) \). The first author [3] proved that the assumption \(p > 2/3 \) is essential for the boundedness of the maximal operator \(\mathcal{M}^{*w} \) from the Hardy space \(H_p(G^2) \) to the space \(L_p(G^2) \).

In 1974 Schipp [7] and Young [10] proved that the Walsh–Kaczmarz system is a convergence system. Gát [1] proved, for any integrable functions, that the Fejér means with respect to the Walsh–Kaczmarz system converge almost everywhere to the function itself. Gát’s Theorem was extended by Simon [8] to \(H_p \) spaces, namely that the maximal operator of Fejér means of one-dimensional Fourier series is bounded from Hardy
space $H_p(G^2)$ into the space $L_p(G^2)$ for $p > 1/2$.

The second author [5] proved, that for any integrable functions, the Marcinkiewicz–Fejér means with respect to the two dimensional Walsh–Kaczmarz system converge almost everywhere to the function itself. This theorem was extended in [2]. Namely, the following is true:

Theorem A1. Let $p > 2/3$, then the maximal operator $\mathcal{M}^{*\kappa}$ of the Marcinkiewicz–Fejér means of double Walsh–Kaczmarz–Fourier series is bounded from the Hardy space $H_p(G^2)$ to the space $L_p(G^2)$.

The aim of this paper is to prove that the assumption $p > 2/3$ is essential for the boundedness of the maximal operator $\mathcal{M}^{*\kappa}$ from the Hardy space $H_p(G^2)$ to the space $L_p(G^2)$. Namely, the following theorem holds:

Theorem 1. The maximal operator $\mathcal{M}^{*\kappa}$ of the Marcinkiewicz–Fejér means of double Walsh–Kaczmarz–Fourier series is not bounded from the Hardy space $H_{2/3}(G^2)$ to the space $L_{2/3}(G^2)$.

Proof. Let

$$f_A(x^1, x^2) := (D_{2A+1}(x^1) - D_{2A}(x^1))(D_{2A+1}(x^2) - D_{2A}(x^2)).$$

It is simple to calculate

$$\hat{f}_{A}^\kappa(i, k) = \begin{cases} 1, & \text{if } i, k = 2A, \ldots, 2^{A+1} - 1, \\ 0, & \text{otherwise,} \end{cases}$$

and

$$S_{i,j}^{\kappa}(f; x^1, x^2) = \begin{cases} (D_i^\kappa(x^1) - D_{2A}(x^1))(D_j^\kappa(x^2) - D_{2A}(x^2)), & \text{if } i, j = 2A + 1, \ldots, 2^{A+1} - 1, \\ f_A(x^1, x^2), & \text{if } i, j \geq 2^{A+1}, \\ 0, & \text{otherwise.} \end{cases}$$

We can write the nth Dirichlet kernel with respect to the Walsh–Kaczmarz system in the following form:

$$D_n^\kappa(x) = D_{2|n|}(x) + \sum_{k=2|n|}^{n-1} r_{|k|}(x)w_{k-2|n|}(\tau_{|k|}(x)) =$$

$$= D_{2|n|}(x) + r_{|n|}(x)D_{n-2|n|}^{\omega}(\tau_{|n|}(x)).$$

Thus, we have

$$\mathcal{M}^{\kappa}f_A(x^1, x^2) =$$

$$= \sup_{n \in \mathbb{N}} |\mathcal{M}_n^\kappa(f_A; x^1, x^2)| \geq \max_{1 \leq N \leq 2^A} |\mathcal{M}_{2A+N}^\kappa(f_A; x^1, x^2)| =$$
we decompose the set \(G \) to investigate the integral \(\int \). Goginava and K. Nagy have \(A > t \) where

\[
\text{We obtain } \| f_A \|_p = \| f_A^* \|_p = \| D_{2^A} \|_p^2 = 2^{2A(1-1/p)}.
\]

We obtain

\[
\frac{\| M^{\kappa} f_A \|_{2^A}}{\| f_A \|_{2^A}} \geq \frac{1}{2A+1-2^{-A}} \left(\int \max_{1 \leq N \leq 2^A} (N|\mathcal{K}_N^w(\tau_A(x^1), \tau_A(x^2))|)^{2/3} d\mu(x^1, x^2) \right)^{3/2}.
\]

To investigate the integral \(\int_{G^2} \max_{1 \leq N \leq 2^A} (N|\mathcal{K}_N^w(\tau_A(x^1), \tau_A(x^2))|)^{2/3} d\mu(x^1, x^2) \), we decompose the set \(G \) as the following disjoint union

\[
G = I_A \cup \bigcup_{t=0}^{A-1} J_t^A,
\]

where \(A > t \geq 1 \) and \(J_t^A := \{ x \in G : x_{A-1} = \cdots = x_{A-t} = 0, x_{A-t-1} = 1 \} \), \(J_0^A := \{ x \in G : x_{A-1} = 1 \} \). Notice that, by the definition of \(\tau_A \) we have \(\tau_A(J_t^A) = I_t \setminus I_{t+1} \). By Cor. 2.4 in [4], for \((x^1, x^2) \in I_A \times I_A \)

\[
\mathcal{K}_2^w(x^1, x^2) = \frac{(2^A + 1) (2^A + 1)}{6}.
\]
Therefore,
\[
\int_{G \times G} \max_{1 \leq N \leq 2^A} \left(N \left| \mathcal{K}_N^w(\tau_A(x^1), \tau_A(x^2)) \right| \right)^{2/3} d\mu(x^1, x^2) \geq \\
\geq \sum_{t=1}^{A-1} \int_{J_t^A \times J_t^A} \max_{1 \leq N \leq 2^A} \left(N \left| \mathcal{K}_N^w(\tau_A(x^1), \tau_A(x^2)) \right| \right)^{2/3} d\mu(x^1, x^2) \geq \\
\geq \sum_{t=1}^{A-1} \int_{(I_t \setminus I_{t+1}) \times (I_t \setminus I_{t+1})} \left(2^t \left| \mathcal{K}_{2^t}^w(\tau_A(x^1), \tau_A(x^2)) \right| \right)^{2/3} d\mu(x^1, x^2) = \\
= \sum_{t=1}^{A-1} \int_{(I_t \setminus I_{t+1}) \times (I_t \setminus I_{t+1})} \left(2^t \left(\frac{2^t + 1)(2^{t+1} + 1)}{6} \right) \right)^{2/3} d\mu(x^1, x^2) \geq \\
\geq \sum_{t=1}^{A-1} \int_{(I_t \setminus I_{t+1}) \times (I_t \setminus I_{t+1})} \left(\frac{2^{3t}}{6} \right)^{2/3} d\mu(x^1, x^2) \geq \\
\geq c(A - 1).
\]
This completes the proof of the main theorem. ♦

References

